SIGLO XXI - QUINTO LUSTRO - "Un nuevo orden emerge de la desintegración del capitalismo que irá reemplazando la célula económica (familia) por una nueva matriz reproductiva (comunas) que cumplirá funciones defensivas, judiciales, productivas y administrativas."
miércoles, 11 de abril de 2012
EL CEREBRO Y EL MITO DEL YO (11)
La naturaleza discontinua del movimiento
Una manera sencilla de reducir la magnitud del problema del control del movimiento sería disminuir la resolución temporal del sistema de control, o sea, no optar por control continuo y en línea (al vuelo). Esta solución fracciona de inmediato la tarea del control temporal en una serie de problemas más pequeños. El control no tiene que ser continuo y ocurrirá a intervalos discretos de tiempo "dt" (literalmente, intervalos discretos de tiempo).
Esto es sumamente importante y conlleva la siguiente consecuencia: un sistema pulsátil no controla los movimientos de modo continuo, sino que lo hace de manera intermitente, generando contracciones musculares agrupadas, de pequeños saltos u ondulaciones. Este punto es esencial porque nos explica que el sistema nervioso controla el movimiento ¡titubeando! La motricidad es un temblor controlado. Los fisiólogos del movimiento saben esto desde hace más de un siglo: los movimientos no se efectúan de modo continuo, su naturaleza es discontinua. Ya en 1886, E. A. Schafer lo había propuesto:
La gráfica de la contracción muscular voluntaria... invariablemente rnuestra, tanto en el inicio como durante la contracción, una serie de ondulaciones que suceden una iras otra con regularidad casi exacta, que sólo puede interpretarse como la respuesta muscular rítmica al estímulo voluntario que provoca, la contracción... Las ondulaciones ... son fácilmente observables y su magnitud y sucesión son lo suficientemente regulares como para no dejar duda en una persona que haya visto una gráfica de una contracción tetánica (o tétanos), que es siempre producida por una excitación de 10 veces por segundo.
Una contracción tetánica (o tétanos) es la máxima fuerza que un músculo puede generar cuando se activa a alta frecuencia. Schafer observó que el ritmo de la contracción muscular voluntaria era claramente de unos 8 -12 Hz. Tras su informe inicial, el fenómeno de la periodicidad de 8 -12 Hz del movimiento voluntario, también llamado "temblor fisiológico", se convirtió en tema de intensa investigación. En 1894, Harris midió la frecuencia de la "tetania voluntaria". Esta se refiere literalmente a la máxima velocidad rítmica a la que se puede mover voluntariamente un músculo o sinergia muscular (incluyendo músculos del brazo, mano, dedos y lengua), como cuando se flexiona y extiende un dedo lo más rápi¬damente posible, o la máxima velocidad a la que se puede balancear voluntariamente el pie. Harris comprobó tal temblor a 8 -12 Hz en todos los músculos estudiados.
Este investigador pasó entonces a plantear que "la velocidad promedio de las sacudidas musculares aisladas es de 10 a 11 por segundo, velocidad suficientemente próxima a la de la tetania voluntaria como para identificarse con ésta". Básicamente lo que se observa en el músculo aislado se refleja también en la generación voluntaria de un movimiento. En 1910, Sherrington señaló que el scherzo del Cuarteto para Piano No. 8 de Schubert requiere movimientos repetitivos de mano y de dedos de aproximadamente 8 Hz, cifra ésta próxima al máximo logrado por pianistas profesionales. También observó que la silaba "la" no puede repetirse más de 11 veces por segundo, por lo que planteó que "el límite prefijado de la frecuencia repetitiva de un mismo movimiento parece ser de 11 por segundo".
Algunos años después, Travís (1929) demostró que si un movimiento voluntario se inicia en posición de prensión, casi siempre comienza en fase con el temblor fisiológico. Informó que "el movimiento voluntario casi siempre es la prolongación del temblor… no interrumpe su ritmo y encaja en la melodía cinética" determinada por el cerebro. Posteriormente sugirió que la máxima velocidad de movimientos repetitivos voluntarios no podía exceder la velocidad del temblor fisiológico. En años más recientes el estudio de! temblor fisiológico reveló la estrecha relación entre la discontinuidad rítmica de unos 10 Hz y el inicio propiamente dicho del movimiento. En 1956, con el trabajo de Travis ya bien avanzado, Marshall y Walsh demostraron que la ejecución real de los movimientos del ser humano realmente sí comienza en fase con el temblor fisiológico y corresponde a la dirección proyectada del movimiento.
Estos investigadores señalaron además que las discontinuidades fisiológicas del movimiento voluntario eran independientes de su velocidad y de la carga impuesta sobre la extremidad. En esencia, aunque la velocidad máxima del movimiento voluntario no puede superar la del temblor fisiológico del músculo, el ritmo del temblor persiste con una periodicidad constante, independientemente de la velocidad del movimiento realizado o de que se ejerza o no alguna fuerza sobre el músculo. En los últimos 15 años, se ha establecido definitivamente que el ritmo de 8 -12 Hz del temblor fisiológico no sólo se observa durante el movimiento voluntario sino también, y tal vez con mayor intensidad, al mantener determinada posición, o cuando los miembros se hallan en reposo o apoyados (Marsden et al., 1984).
Figura 2.3
Ejemplos de temblor. (A, B) Registro de flexión y extensión de la muñeca en un adulto normal que muestra un ritmo de 10Hz (Schäfer. 1886). (C) Muestras de registros en los que se observan rompas voluntarios a diferentes velocidades de ejecución. Los registros superiores de (A) muestran el desplazamiento angular y los registros inferiores, las respectivas velocidades angulares. Las velocidades fueron de 4, 10, 25 y 62 grados/segundo. (D) Espectros de potencia de 160 registros del mismo sujeto en cuatro velocidades idénticos. La amplitud del espectro se encuentra claramente entre 8 -10 Hz. (Tomado de Vallbo y Wessberg. 1993, figura 4, o, 680)
Más recientemente, Wessberg, Vallbo y sus colegas (1995; Vallbo y Wessberg, 1993; Wicklund, Fernstrom et al., 1999) encontraron importantes intermitencias de 8 -10 Hz en los movimientos digitales lentos y "armónicos" (figura 2.3). Como no había consistencia temporal entre las latencias del reflejo de estiramiento que pudieran intervenir en este movimiento y las intermitencias motoras observadas, Wessberg y Vallbo (1995) sugirieron que probablemente el origen de tales discontinuidades debía buscarse en niveles cerebrales, por ende, superiores a la medula espinal. El reflejo de estiramiento es un mecanismo simple de retroalimemación negativa que involucra una fibra muscular y sus correspondientes circuitos segmentarios en la medula espinal y permite que, tras el estiramiento pasivo de un músculo, haya una contracción compensatoria subsiguiente. Basándose en el cálculo de su latencia (desde el estiramiento hasta la contracción), los autores concluyeron que dicho reflejo no explicaba el patrón temporal de actividad de los componentes del temblor del estudio anterior. Por tanto, Wessberg y Vallbo (1995) sugirieron que el impulso de tales componentes periódicos debe generarse en estructuras cerebrales superiores a la medula espinal.
Aun más, N. A. Bernstein se preguntó hace ya más de 30 años (1967): "¿Habrá razón para dudar que la frecuencia [del temblor] marque la aparición de las oscilaciones rítmicas en la excitabilidad, si no de todos, al menos de los principales elementos del... aparato motor, las cuales, por cierto, requieren una sincronización mutua basada en el ritmo?"
El movimiento no se caracteriza por ser tan armónico y continuo como nos lo hacen parecer los movimientos voluntarios; más bien, la ejecución motora consiste en una serie intermitente de sacudidas cuya periodicidad es altamente regular. Además, el temblor fisiológico se observa incluso en reposo (cuando no hay movimiento activo) y se asocia estrechamente con el inicio y la dirección del movimiento. Por ejemplo, los movimientos hacia arriba se inician durante la fase ascendente del temblor fisiológico (Goodman y Nelson, 1983).
¿Qué representan estas discontinuidades rítmicas? ¿Qué significan funcional mente? Para comprender lo anterior, invoquemos el principio de la parsimonia (La Navaja de Occam1). Entonces, ¿cuál es la respuesta más sencilla que encaje con los datos?
1 Este principio, formulado en el siglo XIV por el franciscano inglés William of Occam, una de las glorias de la filosofía escolástica, plantea que las presunciones introducidas para explicar algo no deben ir más allá de lo necesario (nota del editor).
Quizás la explicación más parsimoniosa es la que tome en cuenta la sobrecarga increíblemente alta que el control del movimiento le impone al cerebro. El ejemplo anterior permite apreciar que estas discontinuidades rítmicas no corresponden a una propiedad de los músculos, sino que el temblor fisiológico reflejaría una orden pulsátil por parte del cerebro. Una organización pulsátil es ideal para un sistema de control discontinuo, ya que contribuye a disminuir la sobrecarga de cómputo. Pero si a cambio no se ganara nada, el control intermitente podría acarrear la desventaja de movimientos entrecortados y sin la certeza en la sincronización de grupos musculares durante determinado movimiento. Entonces, además de simplificar el trabajo del cerebro, ¿qué otra ventaja ofrecería un control pulsátil?
No hay comentarios:
Publicar un comentario